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Abstract 

Simple exact formulae are obtained for the expected value of the number of perfect 
matchings in a random hexagonal chain and for the asymptotic behavior of this exp~tation. 

1. In t roduc t ion  

A perfect matching, sometimes called a 1-factor, in a graph G is a set of 
pairwise nonadjacent edges of G that spans the vertices of G. This report deals with 
some recent findings in connection with perfect matchings in graph-like arrangements 
of "hexagons" in the plane, or as "structures" realized by arrangements of regular 
hexagons in the plane. Such structures have interest in the chemistry of  benzenoid 
hydrocarbons, where the perfect matchings correspond to Kekul6 structures [1,2] 
and feature in the calculation of molecular energies associated with benzenoid 
hydrocarbon molecules; see, for example, [3]. For some recent results on the ~ r f e c t  
matchings in these hexagonal structures, see [4-8] .  

In particular, in this note we prove correct a conjecture, stated in [9], concerning 
the number of perfect matchings in random "linear" arrangements of hexagons. 

DEFINITION 1.1: HEXAGONAL GRAPH 

A hexagonal graph is a finite connected graph with no cut vertex, no vertex 
of degree greater than 3, which can be drawn in the plane so that each interior 
region is bounded by a 6-cycle and such that each pair e f  interior regions have at 
most one edge in common. Each interior region in a hexagonal graph is called a 
hexagonal face. [] 
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Three hexagonal graphs are shown in fig. 1. 
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Fig. 1. Three hexagonal graphs. 

DEFINITION 1.2: HEXAGONAL SYSTEM 

A hexagonal graph H is called a hexagonal system provided H can be embedded 
in the plane so that each hexagonal face of H is made congruent to a regular unit 
hexagon. [] 

All three hexagonal graphs in fig. 1 are also hexagonal systems. We remark 
that a hexagonal system can also be regarded as any subgraph of a hexagonal (or 
honeycomb) lattice graph [3] induced by a simple closed Jordan curve in that lattice 
graph. That is, the union of the boundary and interior is enclosed by a Jordan curve. 

DEFINITION 1.3: HEXAGONAL CHAINS 

A hexagonal graph (system) is called a hexagonal chain graph (system) provided 
no hexagonal face is adjacent to more than two other hexagonal faces. [] 

The hexagonal graph H 3 in fig. 1 is a hexagonal chain graph; H 1 and H 2 are  

not. The remainder of this report deals only with hexagonal chains (graphs or 
systems). Clearly, the dual of a hexagonal chain graph, with the external face 
omitted, is a path graph. 

Let H be a hexagonal chain graph with h > 3 hexagonal faces. Let the 
hexagonal faces be labelled by x 1, x 2 . . . . .  x h so that x i and  x i + 1 are adjacent for 
each i = 1, 2 . . . . .  h - 1. Call x 1 and x h t e r m i n a l  faces. Then, the remaining faces 
may be either of two types, which we designate t y p e  L or t y p e  A according to whether 
they separate their two adjacent faces by a distance of 2 or 1, respectively. The 
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L A 

Fig. 2. Two types of non-terminal hexagonal faces. 

concept is illustrated in fig. 2. In fig. 1, the non-terminal faces 2, 3, 4, 5, 6, 7 of H 3 
are of types L, A, A, L, A, L, respectively. 

The number of perfect matchings M h of a hexagonal chain graph with h faces 
can be obtained by a recursive method due to Gordon and Davison given in [10], 
or by the following modified form given in [9,11,12]. Let 

M 1 = 2 ,  M 2 = 3 ,  

and then for i = 3, 4 . . . . .  h, 

f 2Mi_l -Mi -2  
Mi = Mi - 1 + Mi- 2 

if face i -  1 is of type L, 

if face i -  1 is of type A. 

DEFINITION 1.4: RANDOM HEXAGONAL CHAIN GRAPH 

A random hexagonal chain graph (of length h) H(h, p) is a hexagonal chain 
graph with h faces in which each non-terminal face is either of type A with probability 
p, or type L with probability 1 - p .  [] 

Let Mh, p be the number of perfect matching of H(h, p). Then, Mh, p is a random 
variable. Denote the expected value of Mh, p by E(Mh,p). 

LEMMA 1.5 

For each i > 3, 

E(Mi,p) = ( 2 -  p)E(Mi_l,p) + ( 2 p -  1)E(MI_2,p). 

Proof 
If face (i - 1) of H(h, p) is of type A with probability p and of type L with 

probability 1 -  p, then from the Gordon-Davison recursion, 
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E(Mi,p) = P(Mi-  1,p + Mi-2,p) + (1 - p)(2Mi_ l,p - Mi-2,p) 

= ( 2 -  p)Mi_l ,p+ ( 2 p -  1)Mi_2.p, 

E(E(i~i,p)) = E(Mi,p) and since E(Mi,p) is a sum of random variables, it follows that 

E(Mi,p) = (2 - p)E(Mi_ l,p) + (2p - 1)E(Mi_2,p). [] 

In [9, 11, 13], it is suggested that the function E(Mh,p) has interest in chemistry, 
especially concerning its asymptotic behavior with respect to h. The recurrence relation 
obtained in lemma 1.5 enables us to derive an explicit expression for this function. 
This is given in the following theorem. In corollary 1.7.1 to this theorem, we show 
that the value of  the limit ofE(Mh,p)/E(M h _ l,p), as h goes to infinity, is as conjectured 
in [9]. It is appropriate to note that the form of  this limit could be anticipated from 
[11, (eq. 9)] or [13, eqs. (3.2), (3.3)]. 

THEOREM 1.7 

For each i > 2 and when p > 0, 

s - r  \ -T-~-r  s ,  

where r = ( 2 - p  + (p2+  4p)1/2)/2, and s = ( 2 - p -  (p2+  4p)~n)/2. Or, when p = 0, 
for each i >_ 0, 

E(Mi + 1,0) = 2 + i. 

Proof  

Let a i = E(Mi+l,p) , with i >  0, so that ao = 2, a 1 = 3, and by lemma 1.5 

ai= ( 2 - p ) a i _  1 + ( 2 p - 1 ) a i _  2 for i>_2. 

The solution to this recurrence relation is as follows (see, for example, [14, pp. 
210-216] ) :  The characteristic equation is 

x 2 -  ( 2 - p ) x - ( 2 p - 1 )  = 0  

and the characteristic roots are 

r =  ( 2 - p  + (pZ + 4p)ln)/2 and s = ( 2 - p - ( p 2  + 4p)l12)/2. 



I. Gutman et al., Random hexagonal chains 381 

Case 1 : p > 0 so that the two roots are distinct. In this case, 

a i = o:(r)i+ fi(s) i. 

The boundary conditions a 0 = 2 and al = 3 require 

a r  + fis = 3, 0 : + / 3 = 2 ,  

SO that 

a = / 2 s - 3  
S - - r  

_(2r-3) 
s - r  ' 

which proves the first statement of  the theorem. 

Case 2: p = 0 so that r = s = 1. In this case, it is easy to see that a i = 2 + i. [] 

COROLLARY 1.7.1 

If p > 0 ,  then 

lim (E(Mh,p ) /E(Mh_  1,p )) = (2 - p  + (p2 + 4p)1/2)/2. 
h - - )  oo 

Proo f  

E(i~th,p) /E(Mh_l ,p)  = { a t  h - I  + f i sh-1} /{O' .r  h -2  + fiS h -2}  

= {r + ( f i /a )s ( s / r )h-2} / {1  + ( f i /a ) ( s / r )h -2} .  

Since r > s, it follows that 

lim ( E ( m h , p ) / E ( m h _ l , p ) )  = r =  ( 2 - p +  (p2 + 4p)1/2)/2. [] 
h ---> oo 

2. LA-sequences for hexagonal chains 

Associated with any labelled hexagonal chain graph (or chain system) with 
length h is a unique ordered sequence of  (h - 2) symbols from the set {L, A} and 
comprising the sequence of  types of  its non-terminal hexagonal faces. This sequence 
is called the LA-sequence of  the hexagonal chain (see [1, 15]). 

On the other hand, for a given LA-sequence that contains at least two A's, 
there is more than one associated chain. Specifically, each non-terminal face of  type 
A can have one of  two possible orientations with reference to the direction determined 
by the first two faces of  the chain. In view of  this, we can augment the LA-sequence 
of  a chain to reflect orientations of  the faces of  type A by attaching one of  the two 
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signs { + , -  } to each A symbol in an LA-sequence. We call the result an oriented 
LA-sequence (or OLA-sequence) of the hexagonal chain graph (or chain system). 

For each (labelled) hexagonal chain graph or chain system, there is an OLA- 
sequence; furthermore, this is unique up to reversal of all signs. Similarly, for each 
OLA-sequence, there is an associate hexagonal chain graph. It is not true, of course, 
that to each OLA-sequence there corresponds a hexagonal chain system, since not 
every chain graph is a chain system. An obvious example is provided by the OLA- 
sequence (+A, +A, +A, +A). 

DEFINITION 2.1: RANDOM OLA-SEQUENCE 

A random oriented LA-sequence of length h is an OLA-sequence with h - 2 
entries, each of which is "+A" with probability p~, or " -A"  with probability P2, 
or "L" with probability q = 1 - P l  -P2.  The hexagonal chain graph associated with 
a random OLA-sequence is a random hexagonal chain graph. [] 

Obviously, since the Gordon-Davison recursion result is invariant to any 
orientation imposed on non-terminal faces of type A, it immediately follows that 
the number of perfect matchings in a hexagonal chain graph is independent of any 
imposed orientation of the graph. Thus, analogues of lemma 1.5 and theorem 1.7 
for random OLA-sequences follow by using the replacements p = Pl + P2 = 1 - q 
in those statements. 

Note that if all orientations are equiprobable, that is, if p~ = P2 = q = 1/3, 
a random OLA-sequence will result in a random hexagonal chain graph with more 
A faces than in the case where just two equiprobable choices A or L are available 
(with p = q = 1/2). For both probability models, the expected number of perfect 
matchings is the same for equal values of q. 

The effect on limh _~ .o(E(Mh,p)/E(M h_ l ,p)) (see corollary 1.7.1) when there 
are three equiprobable choices, rather than two, is that the limit is then equal to 
(2 + (7)1/2)/3 = 1.54858377(0) rather than 3/2. 

Finally, we comment on the number of hexagonal chain graphs. First note 
that there are  3 h - 2 OLA-sequences of length h - 2. The OLA-sequence all of whose 
entries are L corresponds to exactly one hexagonal chain graph. With this one 
exception, each OLA-sequence and the OLA-sequence obtained by reversing the 
sign of each A entry correspond to the same labelled hexagonal chain graph. Thus, 
the 3 h - 2 0 L A - s e q u e n c e s  correspond to (3 h -  2-t- 1)/2 distinct labelled hexagonal chain 
graphs with h hexagonal faces. 

The probability that a random labelled hexagonal chain graph with h hexagons 
has x non-terminal faces with orientation + A, y with -A ,  and z = h - (2 + x + y) 
with orientation L is 2(h-2)!plXp2Yq'/x!y!z! when z ~ h - 2 ,  and qh-2 when 
z = h - 2 .  

A similar discussion can be developed for unlabelled hexagonal chain 
graphs. 
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The problem of enumerating perfect matchings in various generalizations of 
chain graphs can be reduced to that of enumerating perfect matchings in chain 
graphs (see [12, 16]). 

Acknowledgements 

This work was supported in part by the Fulbright Program (I.G.) and by 
Dyson College of Arts and Sciences Faculty Research and Pace University Scholarly 
Research Grants (J.W.K. and L.V.Q.) 

References 

[ 1] S.J. Cyvin and I. Gutman, Kekuld Structures in Benzenoid Ilydrocarbons (Springer, Berlin, 1988). 
[2] L. Lov~sz and M.D. Plummer, Matching Theory ~orth-Holland, Amsterdam, 1986), pp. 349-352. 
[3] I. Gutman and S.J. Cyvin, Introduction to the Theory of Benzenoid Hydrocarbons (Springer, Berlin, 

1989). 
[4] H. Sachs, Perfect matchings in hexagonal systems, Combinatorica 4(1984)89-99. 
[5] F. Zhang, R. Chen and X. Guo, Perfect matchings in hexagonal systems, Graphs and Combinatorics 

1(1985)383-386. 
[6] F. Zhang and R. Chen, A theorem concerning perfect matchings in hexagonal systems, Nature 

Journal 10(1987)163-173, in Chinese. (The English version of this paper will appear in Acta 
Math. Appl. Sinica.) 

[7] I. Gutman and J. Cioslowski, Bounds for the number of perfect matchings in hexagonal systems, 
Publ. Inst. Math. (Beograd) 42(1988)21-27. 

[8] O. Bodroza, I. Gutman, S.J. Cyvin and R. Tosic, Number of Kekul~ structures of hexagon-shaped 
benzenoids, J. Math. Chem. 2(1988)287-298. 

[9] I. Gutman, The number of perfect matchings in a random hexagonal chain, Graph Theory Notes 
of New York XVI, New York Academy of Sciences (1989)pp. 26-28. 

[10] M. Gordon and W.H.T. Davison, Theory of resonance topology of fully aromatic hydro- 
carbons: I, J. Chem. Phys. 20(1952)428-435. 

[11] I. Gutman and S.J. Cyvin, The number of KekuM structures in long benzenoid chains, Chem. Phys. 
Lett. 147(1988)121-125. 

[12] D.J. Klein, T.G. Schmalz, S. El-Basil, M. Randi6 and N. Trinajsti~, Kekul~ count and algebraic 
structure count for unbranched altemant cata-fusenes, L Mol. Struct. (THEOCHEM) 179(1988) 
99-107. 

[13] D.J. Klein, T.P. ~vkovi6 and N. Trinajsti6, Resonance in random if-network polymers, J. Math. 
Chem. 1(1987)309-334. 

[14] F.S. Roberts, Applied Combinatorics (Prentice-Hall, Englewood Cliffs, NJ, 1984). 
[15] I. Gutman, Topological properties of benzenoid systems. An identity for the sextet polynomial, 

Theor. Chem. Acta 45(1977)309-315. 
[16] D. Cvetkovi6 and I. Gutman, Kekul6 structures and topology. II: Cata-condensed systems, Croat. 

Chem. Acta 46(1974)15-23. 


